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A B S T R A C T

Deep learning (DL) technology has demonstrated remarkable progress in solving the problem of underwater 
polarization imaging (UPI). However, most DL-based UPI methods heavily rely on large amount of labeled data, 
which is extremely time-consuming and cost-intensive. Furthermore, they cannot provide high-quality percep-
tion and simultaneously retrieve full geometry of objects. To address these limitations, we herein exploit the 
merit of meta-learning and propose a two-stage UPI computational method, Meta-DNET-UPI, based on meta- 
learning protocol with a deformable network, which achieves a higher UPI performance utilizing fewer training 
samples compared to state-of-the-art methods. Specifically, the development of Meta-DNET-UPI involves two 
stages: (i) we integrate deformable convolutional networks into U-Net (DNET) as base-learner for learning the 
transferable meta-knowledge of targets under different polarization characteristics’ highly turbid underwater. 
More importantly, the DNET can capture the objects at various geometries and scales by adjusting the receptive 
fields adaptively in accordance to objects’ scales and geometries. (ii) DNETs with multiple shared-parameters are 
fine-tuned on the meta-knowledge to learn the target task. Finally, to train our model, we establish an underwater 
optical scattering system and construct an underwater polarization scattering dataset, covering more abundant 
real-world scenarios. Extensive experiments demonstrate that the proposed method yields favorable image 
quality and rich visible details, and transcends other state-of-the-art methods in terms of visual quality and 
quantitative evaluation.

1. Introduction

Achieving high-quality imaging in turbid water is an essential but 
long-standing optical imaging problem. It enables a series of potential 
applications in various domains, ranging from remote sensing observa-
tion, marine resources detection, to underwater warfare, and under-
water archaeology [1–5]. However, it remains an extremely challenging 
task due to several reasons: 1) In turbid water, suspending microparti-
cles may absorb and scatter target signal, causing a dramatic degrada-
tion of imaging quality; 2) Light exhibits high sensitivity to microscopic- 
scale changes in the morphology of the target structure. Much effort has 
been made to cope with this challenge and some methods have been 
developed, such as optical coherence tomography, wavefront shaping, 
and transmission matrices [6–12]. Nevertheless, reconstructing under-
water target information via these conventional optical experimental 
technologies is often laborious, costly, and time-consuming. Given the 
importance of underwater imaging and the difficulty in experimentally 

retrieving target information, coupled with the urgent need for under-
water imaging technology in various industries, there is now a growing 
interest in developing cost-effective computational methods for 
achieving high-performance underwater imaging.

To date, a series of methods have emerged for enhancing the un-
derwater imaging quality [13–16], including visual prior-based methods 
(e.g., contrast-limited adaptive histogram equalization [17] and block- 
matching 3-D filtering (BM3D) [18]), physical model-based methods 
(e.g., dark channel prior (DCP) [19,20] and Retinex theory [21]), and 
polarization information-assisted methods [1,2,22]. Among them, the 
polarization imaging (PI) method exhibits its distinct advantages, owing 
to the fact that the difference of polarization characteristics between 
target signal and backscattered light [22–26]. These existing underwater 
polarization imaging (UPI) methods can be roughly grouped into the 
following two main categories according to the work modes: physical 
model-based and DL-based methods. In the early stage, physical model- 
based methods, such as polarization difference imaging, dominated in 
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the UPI field. These physical model-based methods generally focus on 
accurately estimating polarimetric measurements and parameters of 
interest [27]. Liang et al. [10] use three Stokes parameters, which are 
calculated from several images photographed by a polarizer in specific 
orientations, to realize the polarization image recovery. There is no 
denying that the physical model-based methods enable a well-informed 
interpretation of the intrinsic physical mechanisms of imaging through 
turbid water. However, physical model-based PI methods have a com-
mon drawback: they generally have apparent uncertainty as physical 
processes are highly complex, which severely limits application 
performance.

Compared to physical model-based methods, DL-based methods are 
not required to consider complex physical models since deep neural 
networks have powerful feature extraction and feature learning capa-
bilities. During the last few years, a number of DL algorithms have been 
utilized to reconstruct polarization scattering images, and a series of DL- 
based methods have been developed, including Polarimetric-Net [28], 
AOD-Net [29], IPLNet [30], PDRDN [31], PFNet [32], U2R-pGAN [33], 
MU-DLU [34], and SAM-MIU-net [35], TIU-Net [36], etc [37–39]. These 
DL-based methods often utilize polarization scattering image informa-
tion to recovery target information with one or more DL algorithms, 
such as convolutional neural networks (CNNs). For instance, in 
Polarimetric-Net, a dense connected neural network is employed to 
learn a UPI model on a large amount of polarization image dataset and 
the results show that the image restoration based on polarization in-
formation is superior to that based on intensity information alone. In 
MU-DLU, Li et al. [34] use the U-Net [40] to train the polarization 
scattering imaging model on a synthesized dataset generated by the 
Monte Carlo algorithm [41]. In recent work SAM-MIU-net, Lin et al. [35]
integrate a self-attention module into the U-Net to extract multi- 
dimensional information from polarization speckle image, thereby 
enhancing polarization imaging further. Each of the aforementioned DL- 
based methods has its own advantage, and does play a role in stimu-
lating the development of this important area. Meanwhile, they also 
have some disadvantages, as reflected by the following facts: 1) most DL- 
based UPI methods require an excessive amount of labeled data to 
construct the UPI model, which is extremely time-consuming and costly; 
2) the performance of existing methods is awkward and poor general-
izability in the face of real-world targets with various geometries and 
scales to be restored.

On the other hand, unlike some polarization-free underwater imag-
ing approaches including DCP, GUDCP [20], WWPF [42], UWCNN [43], 
and SMDR-IS [44], we investigate the inability to recognize an object of 
interest in the strong scattering environment with the naked eye (see 

Fig. 1 for details), i.e., the object stays in a state of “Hardly visible (in 
highly turbid water)”. Further, the focus of our approach is to use po-
larization information that provides multidimensional information 
beyond traditional intensity imaging to solve underwater optical scat-
tering imaging problems.

The concept of meta-learning has undergone evolution over time, and 
it remains a vibrant domain of research in the field of machine learning 
[45]. The initial objective of the ML approach was to enhance algorithm 
performance through knowledge sharing across tasks and acquiring 
optimal strategies for applying existing learning algorithms to new ones. 
The emphasis has gradually shifted towards the development of models 
capable of rapid adaptation to novel tasks with limited data [46]. The 
training of a meta-learner typically involves two stages: meta-training 
and meta-testing. The model undergoes exposure to a diverse range of 
tasks during meta-training, aiming to acquire a comprehensive problem- 
solving strategy that can be effectively applied to novel tasks. The model 
undergoes meta-testing, where it is exposed to a novel task and leverages 
the acquired knowledge from meta-training to swiftly adapt and solve 
the new task.

In this work, we strive to confront challenges toward high- 
performance UPI in dense turbid water. The primary challenge toward 
this goal is to design a high-generalization scheme that is capable 
enough to learn the knowledge between polarization information and 
target radiance with a small number of polarization training samples. 
The second challenge is to design a module that can adaptively capture 
information about targets with different geometries and scales. Moti-
vated by these ideas, herein, we propose a two-stage DL-based pipeline, 
called Meta-DNET-UPI, for high-performance UPI through turbid water. 
For the proposed Meta-DNET-UPI, three main contributions are made to 
enhance the performance of the UPI:

(i) Meta-DNET-UPI attempts to embed polarization characteristics in 
turbid water environments into meta-representation learning for UPI 
enhancement.

(ii) To achieve high-generalization performance with targets that 
vary in size, texture, and shape, we integrate deformable convolutional 
networks into the U-Net to capture the targets at various geometries and 
scales by adaptively adjusting the receptive fields while simultaneously 
extracting abundant context information through concatenating low- 
level feature maps and high-level ones.

(iii) Currently, owing to the extreme difficulty of acquiring polari-
zation images in a scattering environment, there are no publicly avail-
able datasets. Thereby, we establish one scattering system under highly 
turbid water and construct an UPI dataset covering more abundant real- 
world scenes, which facilitates the further development of the UPI 

Fig. 1. Experimental setup for the polarization imaging through turbid underwater, and the obtained images I0◦ (x, y), I45◦ (x, y), I90◦ (x, y), I135◦ (x, y), and ground 
truth from the DoFP polarization camera.
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techniques.
Finally, numerous experimental results indicate that our method 

achieves excellent performance in the UPI from the subjective and 
objective analysis, outperforming other advanced methods. Also, our 
method exhibits strong robustness across different testing datasets.

2. Method

2.1. Basic knowledge of underwater polarization imaging

In this work, inspired by the fact that backscattered light is partially 
polarized, polarization information is used to further the enhance un-
derwater image reconstruction quality. Meanwhile, we utilize Stokes 
parameters S = [S0(x, y), S1(x, y), S2(x, y), S3(x, y)]T to represent the po-
larization information. Each component in the Stokes parameters can be 
extracted from four polarization images, i.e., I0◦ (x, y), I45◦ (x, y), and 
I90◦ (x, y), taken by orienting linear polarizer at 0◦ , 45◦ , 90◦ , and 135◦ in 
the same scene. Generally, circularly polarized light is rarely available in 
the natural environment, thus S3(x, y) component is ignored in this 
work. The Stokes parameters can be expressed as: 

S0(x, y) = I0◦ (x, y) + I90◦ (x, y),
S1(x, y) = I0◦ (x, y) − I90◦ (x, y),

S2(x, y) = I45◦ (x, y) − I135◦ (x, y),
(1) 

where S0(x, y) refers to the total intensity received by the camera; S1(x,
y) represents the intensity difference between the vertical and hori-
zontal components; S2(x, y) denotes the intensity difference between the 
45◦ and 135◦ components.

2.2. Measurement system

As shown in Fig. 1, we use a high permeability glass sink as a turbid 
media container, whose four surfaces are covered with black light- 
absorbing paper to avoid the effect of reflected light from the glass 
walls. The turbid water is utilized as the scattering medium. The light is 
focused by means of a convex lens. To make the taken images contain 
more obvious polarization information, a linear polarizer is employed as 
the polarization state generator to provide polarized illumination in 
front of the green LED light source. Different amounts of skimmed milk 
are injected into the glass sink filled with water to simulate the under-
water environment with different scattering levels. Here, ‘Dis’ represents 
the distance between the objects and the water surface. We use a com-
mercial division of focal plane (DoFP) polarization camera, whose 
spatial resolution is 2448 × 2048 × 3, to take the polarization images 
containing the linear polarization information. Specifically, the surface 
of the DoFP polarization camera’s pixel array is covered with a polari-
zation array consisting of micro-polarizers with four different polariza-
tion orientations of 0◦ , 45◦ , 90◦ , and 135◦ . Thus, for each single shot, 
DoFP polarization camera can photograph simultaneously four polar-
ized images, i.e., I0◦ (x, y), I45◦ (x, y), I90◦ (x, y), and I135◦ (x, y). Using the 
digit made of steel as an example, Fig. 1 shows separately the I0◦ (x, y), 
I45◦ (x, y), I90◦ (x, y), I135◦ (x, y), and ground truth. Note that it is 
impossible to discern the targets in the scattering images by naked eyes. 
In this paper, I0◦ , I45◦ , S0, and S1, are selected as feature sources for the 
following reasons. We use the polarized illumination S=(1, 1, 0, 0)T to 
collect different polarization components. I0◦ component contains suf-
ficient light intensity, whereas I90◦ component has relatively low light 
intensity. Additionally, I45◦ and I135◦ components may have similar 
illumination characteristics, which results in less valuable information 
for target detection from S2 (I45◦ − I135◦).

2.3. Pipeline of Meta-DNET-UPI

Deformable Convolutional Neural Network: a huge challenge in the 
UPI reconstruction is to model the targets with various geometries and 

scales. Existing methods, such as common convolutions, extract target 
features through fixed receptive field, which may inevitably bring bias. 
As shown in Fig. 2, the deformable convolutional networks [47]
(deformable-Conv) solve this problem by introducing deformable con-
volutional layers and deformable ROI pooling layers into the traditional 
neural networks. To be concrete, unlike traditional convolution, 
deformable-Conv incorporates learned offsets from previous feature 
maps generated by additional convolutional layers into the grid sam-
pling locations. Thus, the deformable receptive field can effectively 
capture various geometries and scales that are adaptable to input fea-
tures. Motivated by the idea of deformable-Conv, we integrate the 
deformation convolution into U-Net to enable it to adapt to different 
geometries, scales, etc.

Deformable Network (DNET): Recently deep learning techniques 
have started to emerge as an alternative way to optical computational 
imaging [48,49] including the UPI problems. Inspired by U-Net and 
deformable-Conv, we proposed a deformable network, called DENT, for 
the underwater polarization images (UPIs) recovery. Fig. 3 illustrates 
the network architecture. DENT is composed of four down-sampling 
layers (Encoder) that distil increasingly complex polarization informa-
tion representations of the input, followed by four up-sampling layers 
(Decoder), with lateral connections from the Encoder to fill in contextual 
information. In each Encoder and Decoder stage, DENT employs 
deformable-Conv blocks to model targets of various shapes and scales 
through learning local, dense and adaptive receptive fields. Each 
deformable convolutional block comprises a convolution offset layer 
with kernel size 3 × 3, a convolution layer with kernel size 3 × 3, a batch 
normalization layer, and an ReLU activation layer. During the Decoder 
stage, DENT also inserts a common convolution layer after the merge 
operation to adjust the filter numbers for the convolution offset layer. 
This architecture enables DENT to learn discriminative features and 
produce detailed information about target’s polarization characteristics.

Meta-Learning based Underwater Polarization Imaging Pipeline: To 
tackle the significant issue that most methods for building models rely 
on a large number of training samples, a novel the UPIs reconstruction 
approach is proposed, named Meta-DNET-UPI. Meta-DNET-UPI is based 
on meta-learning techniques [45,50], also known as learning-to-learn, 
which aim to enable data-driven models to learn how to learn given 
only a small amount data. In meta-learning, a model is trained with 
different tasks and then used to rapidly learn new tasks [50]. Following 
the core idea of meta-learning, our proposed Meta-DNET-UPI consists of 
two stages, namely, meta-representation learning and target-task 
learning, and its pipeline can be seen in Fig. 4. To be more precise, in 
the first phase, the proposed DNET is chosen as base-learner. It tries to 
learn how to represent polarization characteristics of target’s three 
different polarization state (i.e., I0◦ (x, y), I45◦ (x, y), and S1(x, y)): 

Ĩ0◦ (x, y) = DNET0(I0◦ (x, y),wΦ ),

Ĩ45◦ (x, y) = DNET1(I45◦ (x, y),wΨ ),

S̃1(x, y) = DNET2(S1(x, y),wΩ ),

(2) 

where wΦ, wΨ, and wΩ represent respectively the transferable meta- 
knowledge of target’s I0◦ (x, y), I45◦ (x, y), and S1(x, y) in highly turbid 
underwater learned by the base-learners (i.e., DNET0, DNET1, and 
DNET2); Ĩ0◦ (x, y), Ĩ45◦ (x, y), and S̃1(x, y) represent objective function of 
different tasks. Note that, the parameters of base-learners containing 
network’s parameters and the number of base-learners are tuned during 
the meta-train stage and stay fixed after each task learning. During the 
target-task learning phase, DNETs with multi shared-parameters based 
on the prior knowledge are adopted to fine-tune the mapping between 
the target radiance and the meta-knowledge: Target = DNET(DNET(DNET 
(S0(x, y), wY),wY),wY), where Target is final reconstruction image; wY is 
the parameter learned by the base-learner.
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2.4. Training details and evaluation metrics

Meta-DNET-UPI and all the comparison methods are implemented in 
the PyTorch deep learning framework [51]. Considering the limitations 
of GPU capacity, all images are adjusted into a fixed size, i.e., 256 × 256. 
In the training procedure, data augmentation strategies based on Scikit- 
image Python library [52] are used for all the methods, including 

random horizontal and vertical flipping. The initial learning rate is set to 
2e-4 and divided by 10 after every 10 epochs, and the maximum number 
of training epochs is set to 150. We adopt the Adam algorithm as the 
optimizer to optimize the model parameters. All experiments are per-
formed on Linux Server Intel (R) Core (TM) i7-7700 CPU @3.6 Hz 48.0 
GB of RAM, and Python 3.7 programming. To speed up training, the 
models are trained on a single Nvidia GeForce RTX 3090 GPU with the 

Fig. 2. (a) Experimental setup for the PSI through scattering medium, (b) The obtained images (I0◦ (x, y), I45◦ (x, y), I90◦ (x, y), and I135◦ (x, y)) from the DoFP po-
larization Camera, the calculated DoLP image, and the ground truth.

Fig. 3. (a) Illustration of Deformable Network. Its architecture with convolutional encoder and decoder using (b) deformable convolutional block based on U-Net 
architecture.

Fig. 4. Pipeline of Meta-DNET-UPI. (a) Meta-train stage. (b) Target-task learning.
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mean square error loss L mse.
Four commonly used image quality metrics, i.e., Pearson Correlation 

Coefficient (PCC), Mean Square Error (MSE), Peak Signal-to-Noise Ratio 
(PSNR), and Mean Absolute Error (MAE), are selected to evaluate the 
quality of image recovery. We use the PCC to quantify the relationship 
between the recovered and true pixel-level values for each image, with 
values between − 1 and 1. MSE is applied to quantitatively measure the 
average deviation between the reconstructed and ground truth pixel- 
level values of each image. In addition, we also use PSNR to quantify 
the content between the reconstructed and real images, with higher 
PSNR values representing closer image content. MAE is utilized to 
quantitatively measure the average absolute deviation between the 
reconstructed and ground truth pixel-level values of each image. The 
larger the PCC and PSNR, the more favorable the outcome, whereas the 
opposite holds true for MSE and MAE.

3. Result and discussion

3.1. Benchmark dataset

To train our proposed model, in this work, a new benchmark dataset 
is constructed by using self-constructed experimental setup. To be spe-
cific, first, the glass sink is filled with water, and the object of interest is 
placed inside at a depth of Dis cm from the water surface. Meanwhile, 
the DoFP polarization camera is placed away from the glass sink to 
produce ground truth images. Then, we blend the water with skimmed 
milk to make it turbid and activate the camera to obtain the scattering 
image of the object. Finally, we experimentally build one training 
dataset, which is composed of 100 groups polarization images. Each 
group has eight images corresponding to I0◦ (x, y), I45◦ (x, y), S0(x, y), 
S1(x, y), as well as their corresponding ground truths. Let D =
{D1,⋯,Di,⋯,Dn}

4
i=1represents total of four datasets and each dataset is 

defined as Di=
{
(x, y)j

}k

j=1
, where (x, y)j denotes a pair of images and its 

corresponding label; K is total number of samples. Thereafter, D is split 
into meta-train set (Dmeta− train), which encompasses images of three 
different polarization state and remaining set is meta-test set (Dmeta− test) 
for target-task learning. Note that, each sample in the training dataset is 
generated under such conditions that the water surface-to-object dis-
tance Dis and the turbidity are set to 9 cm and 133.3NTU, respectively, 
and the targets are only a variety of simple digits. Finally, 80 groups of 
images in dataset are as the training set and the remains as validation 
dataset.

The optical thickness of the medium can be as a measure of its 
scattering capability and is proportional to the scattering medium co-
efficient and the distance between the camera and the object [53]. In 
other words, by adding different volumes of milk or adjusting the dis-
tance of the camera from the target, it is equivalent to changing the 
turbidity of the scattering medium. Hence, in the next experiments, we 
explore the generalization performance of our proposed method by 
varying the parameters Dis and NTU (refer to Section ‘Evaluating the 
Performance of Our Proposed Meta-DNET-UPI’ for details). In addi-
tion, we also investigate the effect of the objects’ geometry and its 
constituent materials on the performance of the proposed method. 
Collectively, we collect four testing datasets, named GEO, DIS, ONTU 
(objects at different underwater turbidities), and MAT, respectively. It 
should be noted that there are no publicly available datasets due to the 
extreme difficulty of obtaining polarization images in a scattering 
environment.

3.2. Ablation experiments

(1) Performance Comparisons between U-shaped network based 
on normal convolution (abbreviated as Normal-U-Net for conve-
nience) and U-shaped network based on deformable convolution 

(abbreviated as Deformable-U-Net for convenience). This section 
examines to what extent the introduced deformable-Conv can help to 
reconstruct the UPIs, especially with respect to target details. Specif-
ically, two separate network structures, i.e., Normal-U-Net and 
Deformable-U-Net, will be investigated. We testify the performance of 
restoring the UPIs on both network structures over the independent 
validation tests on the training dataset and validation dataset. Fig. 5
shows their visual comparison results, and detailed results are listed in 
Table 1.

From Fig. 5 and Table 1, it is easy to see that Deformable-U-Net 
consistently outperforms Normal-U-Net concerning the four evaluation 
indexes. Concretely, the PCC, PSNR, MAE, and MSE are 0.78, 13.86, 
0.15, and 0.046, which are 2.63 %, 10.26 %, 11.76 %, and 20.68 %, 
higher than those of Normal-U-Net, respectively. Furthermore, from the 
perspective of visual quality, the significant visible details gain by 
Deformable-U-Net indicates that it is valid to use deformable convolu-
tion to optimize our model.

(2) Meta-Learning is better than Direct Learning. In this section, 
we perform experiments to research the performance of our DNET with 
different training strategies, i.e., meta-learning and direct learning, on 
the training dataset. Here, ‘Direct Learning’ means that only a single 
model (i.e., DNET) is trained to reconstruct the UPIs. The architecture of 
our proposed Meta-DNET-UPI model based on meta-learning is shown in 
Fig. 4. The comparison results are presented in Table 1 and Fig. 5.

From Table 1, it is straightforward to find that meta-learning-based 
Meta-DNET-UPI model overall outperforms direct learning. For 
example, the average PCC value of Meta-DNET-UPI is 0.81, which is 
3.85 % higher than the average of direct learning, respectively. Notably, 
as listed in Fig. 5, our Meta-DNET-UPI yields the UPIs reconstruction 
more effectively while retrieving the fine image details. The above 
comparison results can demonstrate that the performance is indeed 
enhanced after applying meta-learning scheme.

3.3. Evaluating the performance of our Meta-DNET-UPI

To ensure the reasonability of the experiments, during this section, 
we perform imaging experiments to verify the effectiveness of the pro-
posed Meta-DNET-UPI. Specifically, we design four scenarios for eval-
uating the performance of our Meta-DNET-UPI. In order to assess the 
performance of our method in a comprehensive, stable and fair manner, 
we evaluate the effectiveness of our method on each test dataset.

(1) Evaluation on Underwater Targets of Different Geometries. 
We collect one testing dataset to validate the performance of Meta- 
DNET-UPI owing to the change in targets with different geometries. It 
contains 24 samples. Each sample in the testing dataset is produced in 
the same underwater environment as the samples in the training dataset, 
i.e., the water surface-to-object distance Dis = 9 cm and the turbidity 
NTU = 133.3. It should be noted that, unlike the geometry of the targets 
in the training set, the geometry of the targets in this testing dataset 
includes three categories, i.e., untrained digits, letters, and Chinese 
characters. Table 2 and Figs. 6, 7, and 8 display the performance of 

Fig. 5. (a) and (b) comparison highlights that deformable-Conv can enhance 
the performance of reconstructed underwater polarization images in target 
details. (b) and (c) comparison highlights that meta-learning is better than 
direct learning. (a), (b), and (c) are the images recovered by Normal-U-Net, 
Deformable-U-Net, and Deformable-U-Net with meta-learning, respectively. 
(d) Ground truths.
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Meta-DNET-UPI concerning quantitative evaluation and visual quality, 
respectively.

It is apparent from Table 2 that Meta-DNET-UPI achieves superior 
reconstruction results on three classes of untrained geometric targets 

concerning the four evaluation indexes. Concretely, Meta-DNET-UPI 
reaches PCC > 0.81, PSNR > 14.14, MAE > 0.14, and MSE > 0.038 
on the three classes of untrained geometric targets. Additionally, ac-
cording to the average PCC and PSNR of the Meta-DNET-UPI for the 
three types of untrained targets, we can find that Meta-DNET-UPI yields 
the best performance for the untrained digit targets, followed by letter 
targets and Chinese character. As can be seen from Figs. 6, 7, and 8, well- 
defined visual details and high-quality geometric shapes can be 
observed in the restored images of Meta-DNET-UPI, which correspond 
closely to ground truths.

(2) Evaluation on Targets of Different Underwater Imaging 
Distances. Herein, we perform experiments to investigate the influences 
of different imaging distances, i.e., the water surface-to-object distance 
Dis, on the performance of our Meta-DNET-UPI. We design and conduct 
a sequence of independent test on one testing dataset. It consists of five 
groups, which are produced under the conditions where the distance 
(Dis) from the water surface to the object is changed to 8 cm, 9 cm, 10 
cm, 12 cm, and 13 cm, while simultaneously ensuring the turbidity NTU 
is set to 133.3. It has 40 samples. A comparison of recovery performance 
of our Meta-DNET-UPI for various underwater imaging distances is 
provided in Table 3. Fig. 7 illustrates a visual comparison of recovery 
results of our Meta-DNET-UPI.

As described in Table 3, it is clear that the reconstruction perfor-
mance of the Meta-DNET-UPI at Dis = 9 cm is superior to those at Dis = 8 
cm, Dis = 10 cm, Dis = 12 cm, and Dis = 13 cm in terms of all four 
evaluation indexes. Specifically, compared with Dis = 8 cm, the second- 
best performance’s distance from the viewpoint of PCC and PSNR, the 
PCC and PSNR of Meta-DNET-UPI at Dis = 9 cm are 0.78 and 13.75, 
which are 1.30 % and 2.38 %, respectively, higher than those at Dis = 8 
cm. Furthermore, Fig. 9 shows that when Dis = 8 cm, 9 cm, and 10 cm, 
the images recovered by the Meta-DNET-UPI have well visual quality. 
When distance greater than 12 cm, although the performance of the 
Meta-DNET-UPI drops slowly in recovering image details, the back-
ground and target of the reconstructed image can be effectively 
distinguished.

(3) Evaluation on Targets at Different Underwater Turbidity 
Levels. To test whether Meta-DNET-UPI truly ‘learned’ the polarization 
characteristics that determine the quality of the reconstructed UPI, or is 
simply ‘remembers’ pairwise mapping between scattered images and 
ground truths, we look at the recovery performance of Meta-DNET-UPI 
on targets at different underwater turbidity levels. Hereby, a new testing 
dataset is collected, which consists of six underwater turbidity levels. Its 
samples are generated under the conditions that the turbidity NTU is 
changed to 119.8, 133.3, 148.3, 162.1, 174.3, and 187.1, respectively, 
while simultaneously securing the water surface-to-object distance Dis 
set to 9 cm. It consists of 144 samples. It is worth noting that as the value 
of NTU increases, the scattering coefficient becomes higher, in which 
case the polarization information of the object is further degraded.

By carefully observing Fig. 10 and Table 4, the following three 
phenomena can be seen: (i) Not surprisingly, the generalization capa-
bility of Meta-DNET-UPI at 133.3NTU is comparable to those at 
119.8NTU, and outperforms those at 148.3NTU, 162.1NTU, 174.3NTU, 
and 187.1NTU with respect to four evaluation indexes. (ii) It is 
straightforward to find that the image recovered by the Meta-DNET-UPI 
have well structural integrity, when NTU ≤ 162.1. While NTU > 162.1, 

Table 1 
Performance comparison of different network architectures. ↑&↓ denote larger 
and smaller is better, respectively.

Network PCC↑ PSNR↑ MAE↓ MSE↓

Normal-U-Net 0.76 12.57 0.17 0.058
Deformable-U-Net 0.78 13.86 0.15 0.046
Deformable-U-Net with meta-learning 0.81 14.19 0.14 0.043

Table 2 
Performance demonstrations of Meta-DNET-UPI on the underwater targets of 
different geometries.

Target PCC↑ PSNR↑ MAE↓ MSE↓

Digital 0.83 14.49 0.14 0.038
Letter 0.83 14.14 0.15 0.039
Chinese Character 0.81 14.24 0.15 0.039

Fig. 6. Visual demonstrations of our Meta-DNET-UPI reconstruction on un-
trained digit targets. (a) The scattering image I0◦ (x, y). (b) The images recov-
ered by our Meta-DNET-UPI. (c) Ground truths.

Fig. 7. Visual demonstrations of our Meta-DNET-UPI reconstruction on un-
trained letter targets. (a) The scattering image I0◦ (x, y). (b) The images 
recovered by our Meta-DNET-UPI. (c) Ground truths.

Fig. 8. Visual demonstrations of our Meta-DNET-UPI reconstruction on un-
trained Chinese characters. (a) The scattering image I0◦ (x, y). (b) The images 
recovered by our Meta-DNET-UPI. (c) Ground truths.

Table 3 
Performance demonstrations of Meta-DNET-UPI on the targets of different un-
derwater imaging distances.

Distance PCC↑ PSNR↑ MAE↓ MSE↓

8 cm 0.77 13.43 0.15 0.056
9 cm 0.78 13.75 0.14 0.047
10 cm 0.75 13.02 0.15 0.051
12 cm 0.53 10.91 0.22 0.10
13 cm 0.38 9.81 0.27 0.12
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the target of the reconstructed image can be recognized, although the 
performance of the Meta-DNET-UPI is declined in recovering image 
details. (iii) It has not escaped our notice that our proposed Meta-DNET- 
UPI enjoys reconstructing underwater image under adverse conditions 
of high turbidity water, i.e., NTU = 162.1, and the underwater turbidity 
level’s generalization reaches to 20 % that can be an index for demon-
strating excellence of our proposed Meta-DNET-UPI. These experimental 
results demonstrate that our Meta-DNET-UPI is robust and effective in 
reasonably dense turbid underwater environments.

(4) Evaluation on Underwater Targets with Different Materials. 
The polarization characteristics of the image signal are heavily influ-
enced by the composition of the target material. To further evaluate the 
efficacy of proposed Meta-DNET-UPI, its generalization performance is 
also experimentally evaluated on a new testing dataset containing two 
types untrained targets with different materials, i.e., Paper-Steel and 
Steel-Wood. The Paper-Steel and Steel-Wood mean digits (or letters) 
made of paper against steel background and digits (or letters) made of 
steel against wood background, respectively. It contains 10 samples. 
Table 5 and Fig. 11 list the quantitative and visual comparisons, 

respectively. According to the PCC, PSNR, MAE, and MSE listed in 
Table 5, we can find that our proposed Meta-DNET-UPI shows the best 
performance on the Steel-Wood, followed by Paper-Steel. Concretely, 
among the two groups, Meta-DNET-UPI has the highest values of PCC, 
PSNR, MAE, and MSE on the Steel-Wood, reaching 0.67, 12.15, 0.20, 
and 0.078, respectively. It can be observed from Fig. 11 that the Meta- 
DNET-UPI can effectively distinguish the target and background. 
Moreover, despite the PCC and PSNR of Meta-DNET-UPI are 0.41 and 
8.34 on the Paper-Steel, respectively, the structural outline of the target 
can be reconstructed well.

3.4. Comparison with state-of-the-art methods

This purpose of this section is to further experimentally demonstrate 
the efficacy of our proposed Meta-DNET-UPI by comparing it with other 
recently state-of-the-art UPI methods, including traditional methods, 
such as DCP [19], UDCP [54], BM3D [18], and CLAHE [17], as well as 
DL-based methods, such as MSBDN [55], Polarimetric-Net [28], MU- 
DLU [34], UWCNN [43], SAM-MIU-net [35], SMDR-IS [44] and TIU- 
Net [36]. For a fair comparison, all DL-based methods are trained on 
the same training dataset and evaluated on the same testing samples. 
Table 6 and Fig. 12 summarize the comparison results.

As can be seen from Table 6, it is apparent that the restoration per-
formance of our Meta-DNET-UPI is superior to that of other methods. 
Specifically, compared with the SMDR-IS, Meta-DNET-UPI enjoys the 
improvements of 6.49 %, 7.02 %, 17.65 %, and 24.00 %, on PCC, PSNR, 
MAE, MSE, respectively. Meanwhile, Meta-DNET-UPI has achieved 
comparable performance to recent work TIU-Net. As expected, four non- 
DL-based methods, i.e., DCP, UDCP, BM3D, and CLAHE, gain lower 

Fig. 9. Visual demonstrations of our Meta-DNET-UPI reconstruction on targets 
of different underwater imaging distances. (a) 8 cm. (b) 9 cm. (c) 10 cm. (d) 12 
cm. (e) 13 cm.

Fig. 10. Visual demonstrations of our Meta-DNET-UPI reconstruction on tar-
gets at different underwater turbidity levels. (a) 119.8NTU. (b) 133.3NTU. (c) 
148.3NTU. (d) 162.1NTU. (e) 174.3NTU. (f) 187.1NTU.

Table 4 
Performance demonstrations of Meta-DNET-UPI on the targets of at different 
underwater turbidity levels.

Turbidity (NTU) PCC↑ PSNR↑ MAE↓ MSE↓

119.8 0.82 14.74 0.13 0.036
133.3 0.82 14.28 0.15 0.038
148.3 0.76 13.94 0.15 0.046
162.1 0.71 13.31 0.16 0.055
174.3 0.68 12.73 0.17 0.061
187.1 0.60 11.92 0.19 0.076

Table 5 
Performance demonstrations of Meta-DNET-UPI on the underwater targets with 
different materials.

Material PCC↑ PSNR↑ MAE↓ MSE↓

Steel-Wood 0.67 12.15 0.20 0.078
Paper-Steel 0.41 8.34 0.34 0.190

Fig. 11. Visual demonstrations of our Meta-DNET-UPI reconstruction on un-
derwater targets with different materials. The first four columns are Paper- 
Steel, and the last four columns are Steel-Wood.

Table 6 
Performance comparison between Meta-DNET-UPI and other methods.

Method PCC↑ PSNR↑ MAE↓ MSE↓

DCP 0.31 4.53 0.35 0.31
UDCP 0.27 3.73 0.55 0.41
BM3D 0.29 6.29 0.37 0.19
CLAHE 0.38 7.48 0.35 0.17
MSBDN 0.44 8.05 0.33 0.16
Polarimetric-Net 0.43 7.91 0.34 0.16
MU-DLN 0.72 11.15 0.22 0.064
UWCNN 0.75 13.22 0.18 0.051
SAM-MIU-net 0.74 11.71 0.20 0.062
SMDR-IS 0.77 13.25 0.17 0.050
TIU-Net 0.83 14.10 0.14 0.039
Meta-DNET-UPI 0.82 14.18 0.14 0.038
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performance. On the other hand, Fig. 12 displays visual comparisons for 
the UPIs reconstruction between our method and state-of-the-art 
methods. Compared to the other approaches, our Meta-DNET-UPI 
more effectively achieves the UPIs reconstruction while preserving the 
fine image details. Clearly, taking the reconstruction results of Chinese 
character ‘肥肥’ as an example, our Meta-DNET-UPI delivers a more 
faithful representation of the target. As evidenced by the quantitative 
results in Table 6 and visual comparisons in Fig. 12, an interesting 
observation emerges: while TIU-Net demonstrates marginally superior 
performance in certain quantitative metrics, our proposed method 
achieves significantly better visual quality in object reconstruction tasks. 
The primary reason for this phenomenon is that TIU-Net places more 
emphasis on background reconstruction. In contrast, it inadequately 
meets the crucial requirement for accurate target reconstruction, which 
is the fundamental objective of this task. Therefore, we will consider 
integrating the two methods to further improve the quality of under-
water imaging in future, and at the same time develop effective under-
water evaluation indicators to mitigate this problem [56,57].

4. Conclusion

In this work, by leveraging the meta-learning and multi-dimensional 
characteristics of polarization information, we propose a novel method, 
named Meta-DNET-UPI, to realize high-performance UPI. Experimental 
results demonstrate that the proposed Meta-DNET-UPI significantly 
outperforms other existing UPI methods. The superior performance of 
Meta-DNET-UPI can be attributed to several factors, including careful 
construction of the model based on meta-learning philosophy, the subtle 
use of a deformable network, and an appropriate benchmark dataset. 
There are some limitations to our approach. For instance, in the dataset, 
the samples prepared so far are relatively simple due to the limitations of 
the experimental conditions. In the methodology, our approach lacks 
interpretability. The inner workings of the DL model are a black box to 
us, and we can obtain more if we can understand the underlying 
workings. The performance of DL-based computational imaging 
methods is optimal for high-contrast targets, but these methods are 
likely to encounter limitations when applied to complex scenes. In the 
future study, to further improve the performance of UPI, we will 
concentrate on the following points: (1) designing a more accurate 
method by combining Meta-DNET-UPI and various macroscopically 
identical microscopically different scattering media; (2) exploring the 
relationship between 2D CNNs and 3D CNNs to fully mine discrimina-
tive information; (3) employing the suitable deep learning algorithm to 
obtain the available information extracted from the original scattering 
image representation; (4) developing effective evaluation metrics to 
evaluate the reconstructed object and background separately. Lastly, 
while much improvement has been achieved by our proposed Meta- 
DNET-UPI, further research on UPI yet is an open question.

CRediT authorship contribution statement

Xueqiang Fan: Writing – original draft, Visualization, Software, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization. Menglei Ding: Resources, Methodology, Investigation, 
Formal analysis. Tianyi Lv: Resources, Methodology, Investigation, 
Formal analysis. Xixun Sun: Methodology, Investigation, Formal anal-
ysis, Data curation. Bing Lin: Investigation, Data curation. Zhongyi 
Guo: Writing – review & editing, Supervision, Project administration, 
Methodology, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

This research is funded by the National Natural Science Foundation 
of China under Grant 61775050. The computation of this research is 
supported by the HPC Platform of Hefei University of Technology.

Data availability

Data will be made available on request.

References

[1] H.B. de Aguiar, S. Gigan, S. Brasselet, Polarization recovery through scattering 
media, Sci. Adv. 3 (9) (2017) e1600743.

[2] S.B. Powell, R. Garnett, J. Marshall, et al., Bioinspired polarization vision enables 
underwater geolocalization, Sci. Adv. 4(4):eaao6841 (2018).

[3] S. Yoon, M. Kim, M. Jang, et al., Deep optical imaging within complex scattering 
media, Nat. Rev. Phys. 2 (3) (2020) 141–158.

[4] H. Liu, X. Li, Z. Cheng, et al., Polarization Maintaining 3-D Convolutional Neural 
Network for Color Polarimetric Images Denoising, IEEE Trans. Instrum. Meas. 72 
(2023) 1–9.

[5] J. Xie, J. Dou, L. Zhong, et al., A Dual-Mode Intensity and Polarized Imaging 
System for Assisting Autonomous Driving, IEEE Trans. Instrum. Meas. 73 (2024) 
1–13.

[6] D. Huang, E.A. Swanson, C.P. Lin, et al., Optical Coherence Tomography. Science 
254 (5035) (1991) 1178–1181.

[7] A.P. Mosk, A. Lagendijk, G. Lerosey, et al., Controlling waves in space and time for 
imaging and focusing in complex media, Nat. Photonics 6 (5) (2012) 283–292.

[8] J. Yoon, K. Lee, J. Park, et al., Measuring optical transmission matrices by 
wavefront shaping, Opt. Express 23 (8) (2015) 10158–10167.

[9] X. Wang, T. Hu, D. Li, et al., Performances of polarization-retrieve imaging in 
stratified dispersion media, Remote Sens. 12 (18) (2020) 2895.

[10] J. Liang, L. Ren, E. Qu, et al., Method for enhancing visibility of hazy images based 
on polarimetric imaging, Photonics Res. 2 (1) (2014) 38–44.

[11] L. Valzania, S. Gigan, Online learning of the transmission matrix of dynamic 
scattering media, Optica 10 (6) (2023) 708–716.

Fig. 12. Visual comparisons for underwater polarization image reconstruction between our method and state-of-the-art methods.

X. Fan et al.                                                                                                                                                                                                                                      Optics and Laser Technology 187 (2025) 112900 

8 

http://refhub.elsevier.com/S0030-3992(25)00491-8/h0005
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0005
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0010
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0010
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0015
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0015
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0020
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0020
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0020
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0025
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0025
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0025
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0030
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0030
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0035
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0035
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0040
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0040
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0045
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0045
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0050
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0050
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0055
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0055


[12] X. Pu, X. Wang, X. Gao, et al., Sky Polarization Pattern Reconstruction and Neutral 
Line Detection Based on Adversarial Learning, IEEE Trans. Instrum, Meas, 2023.

[13] J. Zhou, Y. Wang, C. Li, et al., Multicolor light attenuation modeling for 
underwater image restoration, IEEE J, Oceanic Eng, 2023.

[14] X. Fan, B. Lin, K. Guo, et al., TSMPN-PSI: high-performance polarization scattering 
imaging based on three-stage multi-pipeline networks, Opt. Express 31 (23) (2023) 
38097–38113.

[15] J. Zhou, L. Pang, D. Zhang, et al., Underwater image enhancement method via 
multi-interval subhistogram perspective equalization, IEEE J, Oceanic Eng, 2023.

[16] J. Liang, L. Ren, R. Liang, Low-pass filtering based polarimetric dehazing method 
for dense haze removal, Opt. Express 29 (18) (2021) 28178–28189.

[17] A.M. Reza, Realization of the contrast limited adaptive histogram equalization 
(CLAHE) for real-time image enhancement, Journal of VLSI Signal Processing 
Systems for Signal, Image and Video Technology 38 (2004) 35–44.

[18] A. Abubakar, X. Zhao, S. Li, et al., A block-matching and 3-D filtering algorithm for 
Gaussian noise in DoFP polarization images, IEEE Sens. J. 18 (18) (2018) 
7429–7435.

[19] K. He, J. Sun, X. Tang, Single image haze removal using dark channel prior, IEEE 
Trans. Pattern Anal. Mach. Intell. 33 (12) (2010) 2341–2353.

[20] Z. Liang, X. Ding, Y. Wang, et al., GUDCP: Generalization of underwater dark 
channel prior for underwater image restoration, IEEE Trans. Circuits Syst. Video 
Technol. 32 (7) (2021) 4879–4884.

[21] E.H. Land, J.J. McCann, Lightness and retinex theory, Josa 61 (1) (1971) 1–11.
[22] J. Liang, L. Ren, H. Ju, et al., Polarimetric dehazing method for dense haze removal 

based on distribution analysis of angle of polarization, Opt. Express 23 (20) (2015) 
26146–26157.

[23] T. Treibitz, Y.Y. Schechner, Active polarization descattering, IEEE Trans. Pattern 
Anal. Mach. Intell. 31 (3) (2008) 385–399.

[24] Y.Y. Schechner, N. Karpel, Recovery of underwater visibility and structure by 
polarization analysis, IEEE J. Oceanic Eng. 30 (3) (2005) 570–587.

[25] J. Liang, Y. Sun, L. Ren, et al., Short-wave infrared polarimetric image 
reconstruction using a deep convolutional neural network based on a high- 
frequency correlation, Appl. Opt. 61 (24) (2022) 7163–7172.

[26] X. Fan, B. Lin, Z. Guo, Infrared Polarization-Empowered Full-Time Road Detection 
via Lightweight Multi-Pathway Collaborative 2D/3D Convolutional Networks, 
IEEE Trans. Intell. Transp. Syst. 25 (9) (2024) 12762–12775.

[27] W.-Y. Chen, M. O’Toole, A.C. Sankaranarayanan, et al., Enhancing speckle 
statistics for imaging inside scattering media, Optica 9 (12) (2022) 1408–1416.

[28] H. Hu, Y. Zhang, X. Li, et al., Polarimetric underwater image recovery via deep 
learning, Opt. Lasers Eng. 133 (2020) 106152.

[29] Xiang Y, Ren Q, Chen R-P, A neural network for underwater polarization dehazing 
imaging, Optoelectronic Imaging and Multimedia Technology VIII, SPIE2021, pp. 
1189702.

[30] H. Hu, Y. Lin, X. Li, et al., IPLNet: a neural network for intensity-polarization 
imaging in low light, Opt. Lett. 45 (22) (2020) 6162–6615.

[31] X. Li, H. Li, Y. Lin, et al., Learning-based denoising for polarimetric images, Opt. 
Express 28 (11) (2020) 16309–16321.

[32] J. Zhang, J. Shao, J. Chen, et al., PFNet: an unsupervised deep network for 
polarization image fusion, Opt. Lett. 45 (6) (2020) 1507–1510.

[33] P. Qi, X. Li, Y. Han, et al., U2R-pGAN: Unpaired underwater-image recovery with 
polarimetric generative adversarial network, Opt. Lasers Eng. 157 (2022) 107112.

[34] D. Li, B. Lin, X. Wang, et al., High-Performance Polarization Remote Sensing with 
the Modified U-Net Based Deep-Learning Network, IEEE Trans. Geosci. Remote 
Sens. 60 (2022) 1–10.

[35] B. Lin, X. Fan, Z. Guo, Self-attention module in a multi-scale improved U-net (SAM- 
MIU-net) motivating high-performance polarization scattering imaging, Opt. 
Express 31 (2) (2023) 3046–3058.

[36] B. Lin, W. Chen, X. Fan, et al., Transformer-based improved U-net for high- 
performance underwater polarization imaging, Opt. Laser Technol. 181 (2025) 
111664.

[37] B. Lin, X. Fan, D. Li, et al., High-Performance Polarization Imaging Reconstruction 
in Scattering System under Natural Light Conditions with an Improved U-Net, 
Photonics 10 (2) (2023) 204.

[38] B. Lin, X. Fan, P. Peng, et al., Dynamic polarization fusion network (DPFN) for 
imaging in different scattering systems, Opt. Express 32 (1) (2024) 511–525.

[39] X. Fan, W. Chen, B. Lin, et al., Improved polarization scattering imaging using 
local-global context polarization feature learning framework, Opt. Lasers Eng. 178 
(2024) 108194.

[40] Ronneberger O, Fischer P, Brox T, U-net: Convolutional networks for biomedical 
image segmentation, International Conference on Medical image computing and 
computer-assisted intervention, Springer2015, pp. 234-41.

[41] J.C. Ramella-Roman, S.A. Prahl, S.L. Jacques, Three Monte Carlo programs of 
polarized light transport into scattering media: part I, Opt. Express 13 (12) (2005) 
4420–4438.

[42] W. Zhang, L. Zhou, P. Zhuang, et al., Underwater image enhancement via weighted 
wavelet visual perception fusion, IEEE Trans. Circuits Syst, Video Technol, 2023.

[43] C. Li, S. Anwar, F. Porikli, Underwater scene prior inspired deep underwater image 
and video enhancement, Pattern Recognit. 98 (2020) 107038.

[44] Zhang D, Zhou J, Zhang W, et al. Synergistic Multiscale Detail Refinement via 
Intrinsic Supervision for Underwater Image Enhancement. arXiv preprint arXiv: 
2308.11932 2023.

[45] T. Hospedales, A. Antoniou, P. Micaelli, et al., Meta-learning in neural networks: A 
survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (9) (2021) 5149–5169.

[46] D. Wang, F. He, Y. Yu, et al., Meta-learning for T cell receptor binding specificity 
and beyond, Nat. Mach. Intell. 5 (4) (2023) 337–339.

[47] J. Dai, H. Qi, Y. Xiong, et al., Deformable convolutional networks, Proc. IEEE Int. 
Conf. Comput. vis. (2017) 764–773.

[48] J. Feng, W. Zhang, Z. Li, et al., Deep-learning based image reconstruction for MRI- 
guided near-infrared spectral tomography, Optica 9 (3) (2022) 264–327.

[49] B. Bai, Y. Li, Y. Luo, et al., All-optical image classification through unknown 
random diffusers using a single-pixel diffractive network, Light Sci. Appl. 12 (1) 
(2023) 69.

[50] S. Luo, Y. Li, P. Gao, et al., Meta-seg: A survey of meta-learning for image 
segmentation, Pattern Recognit. 108586 (2022).

[51] A. Paszke, S. Gross, F. Massa, et al., Pytorch: An imperative style, high-performance 
deep learning library, Adv. Neural Inf. Proces. Syst. 32 (2019).

[52] S. Van der Walt, J.L. Schönberger, J. Nunez-Iglesias, et al., scikit-image: image 
processing in Python, PeerJ 2 (2014) e453.

[53] M. Dubreuil, P. Delrot, I. Leonard, et al., Exploring underwater target detection by 
imaging polarimetry and correlation techniques, Appl. Opt. 52 (5) (2013) 
997–1005.

[54] P.L. Drews, E.R. Nascimento, S.S. Botelho, et al., Underwater depth estimation and 
image restoration based on single images, IEEE Comput. Graphics Appl. 36 (2) 
(2016) 24–35.

[55] Dong H, Pan J, Xiang L, et al., Multi-scale boosted dehazing network with dense 
feature fusion, Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition2020, pp. 2157-67.

[56] H. Ding, M. Ding, T. Lv, et al., Polarimetric Observable based Optical Remote 
Sensing Systems for Heterogeneous Layered Scattering Environments, Opt. Lasers 
Eng. 189 (2025) 108916.

[57] D. Li, I. Montes, M. Canabal-Carbia, et al., Enhanced characterization of 
depolarizing samples using indices of polarization purity and 
polarizance–reflection–transformation spaces, Adv. Photonics Nexus 4 (1) (2025) 
016009–20109.

X. Fan et al.                                                                                                                                                                                                                                      Optics and Laser Technology 187 (2025) 112900 

9 

http://refhub.elsevier.com/S0030-3992(25)00491-8/h0060
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0060
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0065
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0065
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0070
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0070
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0070
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0075
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0075
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0080
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0080
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0085
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0085
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0085
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0090
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0090
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0090
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0095
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0095
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0100
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0100
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0100
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0105
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0110
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0110
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0110
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0115
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0115
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0120
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0120
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0125
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0125
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0125
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0130
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0130
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0130
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0135
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0135
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0140
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0140
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0150
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0150
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0155
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0155
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0160
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0160
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0165
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0165
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0170
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0170
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0170
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0175
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0175
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0175
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0180
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0180
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0180
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0185
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0185
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0185
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0190
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0190
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0195
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0195
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0195
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0205
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0205
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0205
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0210
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0210
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0215
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0215
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0225
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0225
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0230
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0230
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0235
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0235
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0240
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0240
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0245
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0245
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0245
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0250
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0250
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0255
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0255
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0260
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0260
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0265
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0265
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0265
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0270
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0270
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0270
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0280
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0280
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0280
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0285
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0285
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0285
http://refhub.elsevier.com/S0030-3992(25)00491-8/h0285

	Meta-DNET-UPI: Efficient underwater polarization imaging combining deformable convolutional networks and meta-learning
	1 Introduction
	2 Method
	2.1 Basic knowledge of underwater polarization imaging
	2.2 Measurement system
	2.3 Pipeline of Meta-DNET-UPI
	2.4 Training details and evaluation metrics

	3 Result and discussion
	3.1 Benchmark dataset
	3.2 Ablation experiments
	3.3 Evaluating the performance of our Meta-DNET-UPI
	3.4 Comparison with state-of-the-art methods

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


